Exercise 62

Where does the normal line to the parabola $y=x^{2}-1$ at the point $(-1,0)$ intersect the parabola a second time? Illustrate with a sketch.

Solution

Take the derivative of the given function,

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x}\left(x^{2}-1\right) \\
& =\frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}(1) \\
& =(2 x)-(0) \\
& =2 x,
\end{aligned}
$$

and evaluate it at $x=-1$.

$$
y^{\prime}(-1)=-2
$$

This is what the slope of the parabola is at $x=-1$. The slope of the normal line is the negative reciprocal, $1 / 2$, and if it goes through the point $(-1,0)$, it has the equation

$$
\begin{gathered}
y-0=\frac{1}{2}(x+1) \\
y=\frac{1}{2}(x+1) .
\end{gathered}
$$

To find the values of x where this line intersects the parabola, set the two functions equal to each other and solve for x.

$$
\begin{gathered}
\frac{1}{2}(x+1)=x^{2}-1 \\
x^{2}-\frac{1}{2} x-\frac{3}{2}=0 \\
(x+1)\left(x-\frac{3}{2}\right)=0 \\
x=\left\{-1, \frac{3}{2}\right\}
\end{gathered}
$$

Plug $x=3 / 2$ into the given function for the parabola to find the corresponding y-value on the curve.

$$
y\left(\frac{3}{2}\right)=\left(\frac{3}{2}\right)^{2}-1=\frac{5}{4}
$$

Therefore, the normal line intersects the parabola a second time at

$$
\left(\frac{3}{2}, \frac{5}{4}\right) .
$$

Below is a plot of the parabola and its normal line at $(-1,0)$.

